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Assuming the Mulliken electronegativity density functional theory (DFT) formulation as the primary structural
information on atomic systems, we propose a new atomic radii quantitative definition and scale. The radii
scale based on DFT first principles is further used to evaluate the atomic diamagnetic susceptibility,
polarizability, and chemical hardness. A new chemical hardness expression in terms of atomic radius is also
given. The investigated quantities show that periodic trends prove the reliability of the proposed radii definition.
Moreover, the proposed method to calculate size of atoms is useful for the theoretical prediction of several
size-dependent physicochemical properties.

1. Introduction

The evaluation of periodic properties is a fruitful research
field starting from 1869 when Mendeleev proposed the periodic
table of elements.1 One of the most important periodic concepts
is, certainly, the atomic size or radius. Indeed, it is very useful
in explaining many chemical and physical characteristics of the
elements and in predicting their reactivity behavior. The history
of atomic radii evaluation is rich and exciting and starts from
the beginning of the modern chemistry. Briefly, we are reminded
of the pioneering works of Bragg, Goldschmidt, Zachariasen,
Pauling, and Slater.2-6 From an experimental point of view,
the atomic radii of some elements can be obtained from X-ray
or from spectroscopic measurements, but their reliability is often
questionable because of the experimental conditions (e.g., crystal
type, allotropic modifications, coordination number, tempera-
ture). Because of the importance of the prediction of the
internuclear distances into a molecule and between different
molecules, many attempts have been made to fix radii values
such that a sum of two of them is able to reproduce their
distance, no matter the kind of bond existing between the
considered atoms. Unfortunately, a plethora of scales has
appeared, and a very long series of terms has been introduced
to indicate the radius in different environmental conditions. As
a consequence, the possibility to estimate theoretically this
periodic property is very advantageous because it does not
depend on the given physical conditions.

From a theoretical viewpoint, some atomic radii scales
have been proposed on the basis of several quantum mechan-
ical tools going from self-consistent field (SCF) to density
functional theories (DFT).7-15 In a very recent work of Ghosh
and Biswas, a detailed literature survey on this matter is
reported.16

With the introduction of DFT of many electrons systems,
many useful qualitative chemical concepts (e.g., chemical
potential, and chemical hardness and softness) have found a
rigorous quantitative definition.12 In this context, the chemical
potential,µ, is defined as the first derivative of the energy with
respect to the change of the number of the electrons,N, and is
ultimately identified with the negative of electronegativity,ø.17

Because electronegativity measures the tendency of atoms to
attract bonding electrons to themselves at their valence shell, it
is also related to the outer orbitals and then to the size. Therefore,
a definition of electronegativity obtained in the framework of
DFT and properly correlated with the atomic radius can provide
a quantitatively rigorous atomic radii scale. With the purpose
to obtain “constant” atomic radii useful to describe any bonding
situation, we propose in this work a new atomic radii scale
computed by using the electronegativity formulation based on
a new approach, which employs the chemical action concept18

and the Slater-type orbitals for the considered elements.

2. Method and Computational Details

2.1. Atomic Radii and Electronegativity. The relation
between atomic radii and electronegativity is obtained starting
from the electronegativity formulation,18 derived from the first
principles of DFT. In this context, we define the atomic radius
as the limit until which an electron can be added to an atom
from infinity, due to its electronegativity.

In the DFT framework, the analytical expression introduced
to evaluate electronegativity is given, according to the work of
Garza and Robles,19 in terms of the local response function,
L(x):

with x, F, andV being the position vector, electronic density,
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and the external potential, respectively. The final form it assumes
is:18

with N ) ∫F(x) dx being the total number of electrons.

In an approach that correlates atomic radius with electro-
negativity, it is of fundamental importance to know the
electronic density distribution of a given system, and in this
respect a suitable treatment is based on the Slater orbital
electronic picture. Therefore, in eqs 1 and 2, the Slater-type
orbital expressions have been used and the relative integrals
have been performed, resulting in the linear response terms:

and the chemical action index:

with Zeff, n, ê, and Γ being the nuclear effective charge, the
valence principal quantum number, the orbital exponent, and
the Gamma Euler function, respectively.

Introducing eqs 3-5 into eq 2 is obtained the equation for
the atomic radii:

This equation is transcendent in atomic radius and has to be
numerically solved for each atomic system once all the other
atomic parameters (i.e., total number of electrons, involved
quantum valence shell, nuclear effective charge, and orbital
exponent) are fixed.

With the aim to compare our results with another “absolute
environmental-independent” scale, we report the radii scale
recently obtained by Ghosh and Biswas (GB) using the condition
of the maximum radial charge density distribution function of
the topmost electrons of the atoms.16

2.2. Size-Dependent Atomic Properties: Diamagnetic
Susceptibility, Polarizability, and Chemical Hardness.An
electronic system in the presence of an external field (nuclear,
magnetic, electric) gives different responses according to the
nature of the action. Correspondingly, specific sensitivity
parameters can be introduced: diamagnetic susceptibility as the
response to an applied magnetic field, static dipole polarizability
that accounts for the electronic cloud deformation under an
applied electric perturbation, and chemical hardness associated
with the resistance of an electronic cloud to deformation induced
by applied electrostatic perturbations at constant nuclear po-
tential. Because all these properties are size dependent, their
theoretical computation and comparison with available experi-
mental counterparts can give a measure of the reliability of the
proposed radii scales.

This diamagnetic effect can be quantified through the
diamagnetic susceptibility formula:20

In this equation, the valence electrons are taken explicitly into
account, while the core ones are included in the atomic radius
computation.

To obtain the expression for the atomic static dipole polar-
izability, the electronic response to an applied electrical field
is considered not so strong as to cause the first ionization. The
final expression19

is dependent on the cube of atomic radius,R3, and the nuclear
effective charge,Zeff. From the dependence of atomic polariz-
ability on the cube of atomic radius, the dependence on the
atomic volume also rises immediately. Therefore, the atomic
polarizability values have to closely follow the periodicity of
atomic volumes as prescribed by the Lother Meyer’s periodic
curve.

The last-examined index that quantifies the electronic cloud
response to an external perturbation is the chemical hardness.
Usually, the chemical hardness is associated with the inverse
of polarizability because it accounts for the inertia of the
electronic cloud to deformation. However, the relation of inverse
proportionality between hardness and polarizability deserves
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more attention.21-23 In the DFT framework, the chemical
hardness assumes different general formulations. One of these
directly correlates the chemical hardness with the inverse of
the global softness,S. The atomic resulting formula, relating
hardness with the atomic radius, looks like:19

Another way to quantify the chemical hardness in DFT is to
use its relation with electronegativity:12

Then, the next step is to use the electronegativity formulation
proposed by us, (see eq 2).18 After partial derivation of both
sides of eq 2 with respect to the total number of electrons is
performed, the chemical hardness takes the form:

where the following definitions are used:

If an effective nuclear central atomic field is considered and
the same approximations involved in the derivation of eq 8 are

used, the final working formula for the atomic chemical hardness
becomes:

We would like to underline that because the atomic radii are
eliminated from both eqs 8 and 13, an expression results which
directly links chemical hardness and atomic polarizability but
in a more complex manner than the previously proposed inverse
relations.21,22

3. Results and Discussion

The atomic radii computed by our model (eq 6,RDFT) for 52
elements starting from lithium are collected in Table 1 together
with those derived by Ghosh and Biswas (RGB).16 To better
understand the periodic behaviors, the same data are depicted
in Figure 1. The analysis of Table 1 and Figure 1 clearly shows
that the considered atomic radii scales follow the same trend,
whereas the absolute values differ significantly, with theRGB

values higher than the correspondingRDFT. This difference can
be ascribed to the difference in the approaches used to evaluate
the radii based on the gradient and on the integral of the
electronic density, respectively. With the aim of comparison,
in the same figure the atomic radii scale obtained employing
the Boyd-Markus (BM) electronegativity definition24 was also
depicted (RBM). It is worth noting that the proposed DFT
procedure fits very well with the Boyd and Marcus scale.
Because of the similarity in the BM and DFT formalisms, both
based on the integral approaches, the corresponding atomic radii
scales show very close trends.

The interpolation of the atomic radii data in terms ofZ gives
a functional dependence (RDFT ) 0.74+ 0.01Z), which can be
used also to directly estimate the ionic radii when the nuclear

Figure 1. The plot of atomic radii scales from Ghosh-Biswas (GB), actual (DFT), and Boyd-Markus (BM) formulations.
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charge is replaced by the effective one corresponding to the
considered ionic structure.

While verifying whether our scale respects the fundamental
periodic behaviors, we noted that the atomic size decreases along
the rows and increases down the main groups.

The contraction of the atomic size among the transition metals
is also well reproduced. Indeed, the d-block radii decreased in
going from 1.48 Å for scandium to 1.02 Å for zinc and from
1.87 Å for yttrium to 1.28 Å for cadmium.

As previously mentioned, a first analysis of the reliability of
the obtained radii can be performed by using them to compute
other size-dependent properties such as chemical hardness, static

polarizability, and diamagnetic susceptibility. The obtained
values for these response indices have been sketched in Figure
2 to demonstrate the periodic trends.

As the first ionization potential (I1) is directly related to the
atomic size and is experimentally measured,25 the comparison
between the trends ofI1 and the calculated radii gives a direct
measure of the goodness of the proposed scale. From Figure 2
it is evident thatI1 andRDFT profiles, with some deviations, are
homomorphic, and that a decrease ofRDFT corresponds to an
increase ofI1. The natural relationship between these two
quantities is obeyed because a more compact atomic volume
requires a higher energy for the ionization.

Figure 2. The comparative trend of the atomic DFT radii scale (middle left) with respect to the diamagnetic part of atomic susceptibilities (upper
left), the atomic first ionization potential (lower left),25 the atomic static dipole polarizability (upper right) with respect to the chemical hardness
from softness (middle right), and from electronegativity (lower right) formulations, respectively.
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The analysis of the periodic trends of the other physical-
chemical properties, diamagnetic susceptibility, polarizability,
and hardness, obtained using the newly proposed radii values
is equally satisfactory. Along a period, as a result of the
competition between the quadratic decreasing of the atomic radii
and the linear increasing of the valence electrons, the diamag-
netic susceptibility follows a profile that is similar to that of
RDFT (see Figure 2).

Because the hardness and the polarizability indices are linked
through an inverse relationship (see, for instance, eqs 8 and 9),
their trends can be simultaneously compared with the atomic
size. Their periodicity can be correlated to the maximum
hardness and minimum polarizability principles, as recently
pointed out by Chattaraj and Maiti.26 Thus, like the other
properties previously discussed, hardness and polarizability
follow well-defined periodic trends as a function of the atomic
number. Figure 2 shows that whenR decreases,η increases
along the period. It is also evident that the two hardness scales,
computed by using eqs 9 and 10 for their definitions, differ
only in their absolute values.

4. Conclusions

In this paper we have reported a new method, based on the
electronegativity definition, to obtain quantitative atomic radii
in the framework of the density functional theory. The reliability
of the computed atomic radii for the first four rows of the

periodic table has been checked through a comparison with
the directly size-dependent and experimentally measured ioniza-
tion potential. From the proposed radii values, other response
functions (diamagnetic susceptibility, polarizability, global
hardness, as well as a new atomic radii dependence) have been
derived and their calculated periodic behaviors have been
examined. It has been shown that all these properties compare
well with the proposed atomic radii periodic trends. Work is in
progress to test the reliability of the proposed scale in reproduc-
ing other experimental parameters.
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TABLE 1: Atomic Radii Scales Computed from DFT
Electronegativity (Upper) and Ghosh-Biswas (Lower)
Formulationsa

a All radii values are in Å.
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